

©

Soaring Eagle Resource

DATABASE PERFORMANCE FOR EXECUTIVES

We received a call recently from a business partner who told us, in essence, “We have a customer, a large

hospital, who complained of database performance issues. We spent $3M of their money upgrading their

systems, and the performance is the same. The CIO is worried about his job, and we are worried that we

are going to be sued for the $3M. Can you help us?”

This one incident (we hear of them on a monthly, if not weekly basis) is indicative of a host of problems.

First & foremost is that in order to solve a problem, first you have to identify it. This premise sounds

simple, but I assure you it’s extraordinarily common to “throw hardware at a problem.” The problem is

that if hardware was not your problem hardware won’t solve the problem. This is always intuitive after

the fact, but you also have to understand the issue of making changes in database production

environments.

I was on site at a large health insurance company a few years ago, who had a relatively small window (6

weeks) to attempt a database upgrade. At any organization of any size, a database upgrade is something

you test thoroughly before you put it into production. At this customer site there was a performance issue

in the new software they’d uncovered. A process that was taking about 2 minutes (which was barely

acceptable) was suddenly taking 23 minutes (which was completely unacceptable). If they could solve it,

they could roll out (internally certify and upgrade the software), if not, they’d have to wait almost a year

for the next window. In comes the expert (us). We found that while they did indeed find a very specific

software bug, there was another option. The code was written badly (in fact was one reason that the bug

was uncovered). A small change in the code, and the 2 minute job could run in 2 ms. I was pleased with

the finding, brought it to the customer expecting a pat on the head, only to have the customer tell me that

solution was unacceptable. With a 6-week window, I had expected this would be an easy code change to

fix and roll in, and was very surprised that my solution was rejected. After all this was about 60,000 times

faster than the prior approach, and 600,000 times faster than their existing dilemma. The customer said,

“It takes us 8 weeks to review and roll out any changes. Try again.”

© 2017 Soaring Eagle Data Solutions CONFIDENTIAL Author Jeffrey Garbus

The message here is that for IT Executives, it is easier – politically and technologically – to make a

hardware change than a software change. CIOs often “Throw money at a problem” in order to make it go

2017 Soaring Eagle Consulting Author: Penny Garbus

away because it is more cost effective to guarantee an immediate resolution to a problem than it is to

identify the root cause and fix it.

The catch is, if the problem wasn’t hardware, it may be that faster CPUs, more memory, or faster storage

access times are not what was needed, as that hospital found out the hard way. Sometimes you have no

alternative to fixing the code, or tuning the database.

This is one place where the is no substitution for experience and expertise – note that those are two

separate, mandatory requirements.

ROOT CAUSE ANALYSIS

In order to solve a problem, you first need to identify the problem. Buying faster hardware may solve the

problem, if that is in fact the problem, but in real life this approach simply masks the problem for a while,

the problem continues to snowball, then to continue the metaphor the snowball freezes and hits you with a

hard ice ball instead of a soft, poofy snowball. (I don’t think it feels like a soft poofy snowball when it

first hits, but compared to the ice ball… read the above issue with the hospital).

So, how do we get there from here?

Tools

First you need tools that enable you to measure what’s happening on your system. There are dozens of

tools out there, and most of them are JUNK. I’ve lost count of the number of times I’ve been brought in to

solve a performance problem, I’ve been proudly shown the tools the shop has purchased, which are

useless, which was the first reason they couldn’t figure out the problem without me.

We will not be listing any tools here. I don’t want to catch flak from vendors I list as bad, and while we

are reselling the very few tools we think are good (i.e. make us successful), we do change those over time,

and would much rather you call us & ask for a current recommendation.

That said, your tool needs to do many things (in no particular order):

1) Measure the utilization of resources over time… CPU, memory (yes, very different from CPU),

storage bandwidth, network bandwidth. That list of 4 is a simplification, as there are multiple

metrics that are tracked for each, but that’s the starting list.

© 2017 Soaring Eagle Data Solutions CONFIDENTIAL Author Jeffrey Garbus

2) Measure the impact of database activity… this includes the ability to identify which queries are

running, and what they are doing. “What they are doing” in this context does not mean what

report they are running, but what resources they are using and how they are using them. For

example it’s important to know if a query is CPU-bound (limited by CPU), memory-bound,

blocked by another process with locks on it… etc.

3) Measure the impact of other activities as they interact… “Is my report slow because lots of folks

are running it, or because it’s being blocked, or because I simply can’t push that much data over

the internet?”

4) Graphically and easily identify which queries are taking up the most resources

5) Graphically and easily identify which queries are taking up the most elapsed time

6) Graphically and easily identify which queries are running most frequently

a. There’s a difference between one query running for an hour and one query running once

per second for an hour and one query running 1000 times/second for an hour

7) Graphically and easily identify which logins are involved in the above (critical in tracking down

who did what & when)

There’s more but this is a start… if your tool can’t do these things, and simply enough that a production

support manager (i.e. manager and not data expert) can look, identify a problem, and ask for resolution,

your tool is likely shelf-ware (i.e. software the lives on a shelf and doesn’t get used)

FIXING THE UNDERLYING PROBLEMS

So once you’ve identified the underlying problem, that’s where you target your resources, whether that be

buying hardware (as of this writing, the most common hardware purchases we are recommending are

faster disk – for when we have positively quantified an IO bandwidth issue – and memory, also when

we’ve quantified an issue – most folks overbuy CPU as it’s very commodity today, even with DBMS

vendors pricing their wares by CPU).

Before we do either of those, though, we look to tune the application. It’s not unusual, with a few

relatively minor and simple changes, to reduce CPU from 95% to 16% (a recent success), or memory

requirements to a tiny percentage of what they were, or disk requests from 100 trillion/hour to 3000/hour

(not making that one up either).

Note that many research organizations have quantified mean time to resolution (MTTR) for performance

issues at 80% identification of problem, 20% resolution, another great reason to invest in a tool to track

down issues.

How do we do this? There are 3 primary tasks, query tuning, architecture, and index selection.

© 2017 Soaring Eagle Data Solutions CONFIDENTIAL Author Jeffrey Garbus

Query tuning

What happens in real life (i.e. outside the classroom) is that software developers are very good at creating

logical, sensible, procedural code that’s relatively easy to maintain. This last part is very important. CIOs

/ CTOs will tell you that the average cost of maintenance of an application is seven times the cost of

developing it. Restated, if you spend $1,000,000 building a software application, you’ll spend $7,000,000

maintaining it before the application gets replaced. The easier the code is to maintain, the lower you can

keep that number – business rules and needs ALWAYS change.

Here’s your problem: The people who write your applications generally do NOT understand database

performance, and as a result often create artistic examples of sophistry – creations which are eminently

logical but flawed because they don’t understand how the underlying technology works.

Solution: have your DBAs code review before any data manipulation language (DML) accesses anything

on your production database applications.

Architecture

Architecture of your DBMS is very hardware and application dependent, but there are a variety of issues

that can negatively drive performance. Here’s a short-list.

High availability is a buzz-phrase that has made the circuit, and really means that if your primary DBMS

fails, you have another one to back it up, often automatically. For example, if your primary server is in

Miami, and Miami gets hit by a hurricane, are your users in Chicago going to be happy that the hurricane

in Miami, which perhaps cut off power or an internet line, means that they are unable to do their jobs?

There are a variety of ways you can make this happen, many of them popular and successful today. Some

of them are being done, though, with an eye towards perfection rather than performance.

For example, let’s say that you have a primary data center in Miami, with a failover in Chicago. It’s

reasonable to assume that a hurricane hitting Miami won’t take out the Chicago data center and that an ice

storm taking out the Chicago data center is going to have no effect on Miami. Good decision so far.

Have you considered, though, the speed of light? How is that relevant?

Well, pushing information across a fast line to Chicago from Miami might take 30ms. The signal coming

back that says “Got it!” would take the same 30ms. 60ms round-trip time doesn’t seem like a lot. In fact,

as an exercise for the reader, wait 60ms before you read this next sentence. Oh, wait, 60ms is a bit below

our threshold of awareness. But multiply that out by thousands of processes per second. This might end

up creating a backlog which affects performance on your primary server.

That example assumed “synchronous” data commitment – in other words, making a change at the one site

could not complete before the change was made permanent at the remote site. What, though, if we chose

© 2017 Soaring Eagle Data Solutions CONFIDENTIAL Author Jeffrey Garbus

“asynchronous” data commitment? For asynchronous commitment, we commit (make permanent) the

changes on the primary, without regard to whether the secondary is up, and trust the changes to make it to

the secondary. It becomes possible that there is a lag between the data on the primary moving to the

secondary, in case of a sudden unavailability of the primary and failover to the secondary… of about 30

ms of data.

Some places and times, this is no matter. Users will know there was a failover, and make sure whatever

they were working on still made it. Others, that loss completely unacceptable (for example, you are

transferring money from your checking account to your savings account, and an automatic withdrawal

fails because of that, your payments are late and don’t’ make it… there will be lots of unhappy campers.

Indexing

Indexing is the life blood of the database performance expert.

We hope you’re all old enough to remember phone books, as we haven’t come up with a better metaphor

for database b-tree indexes.

Consider the phone book. It is an index organized but last name, then first name, then middle name,

which allows you to look up an address and telephone number.

This “phone book” structure is the key to getting information quickly from large databases.

Consider a table with 100,000,000 rows of data in it. This is not the least bit unusual anymore (100

million used to be a very large table, but we have customers with 20 employees with much larger tables…

on the order of 10 to 100 times bigger). So, how do you want to find your address & phone number? By

checking every row? Or by using the “phone book?” We will pick the phone book most of the time (not

all of the time… this is where database performance experts earn their money), as we can then get to the

information we want with just a few (8 or 10) page requests (a page is the basic unit of io), rather than

millions.

That telephone book (OK, the indexes) are going to need to be constructed to meet the needs of each

query that runs against the database. Stated more technically, and query that the DBMS needs to optimize

and process will need a matching index in order to avoid the table scan – the systematic scanning of the

entire table.

Matching the indexes to queries is a science and art, and can have a dramatic effect on query performance.

A favorite example is reducing a 48-hour query to 23 seconds by modifying a query.

Another recent example had 3,000 users downloading data in 2 minutes rather than 30 – prompting 3,000

calls to the help desk, saying “Thank you! Thank you!”

© 2017 Soaring Eagle Data Solutions CONFIDENTIAL Author Jeffrey Garbus

SUMMARY

